
The computation of linear and nonlinear optical constants of semiconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 4691

(http://iopscience.iop.org/0953-8984/8/26/003)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 4691–4707. Printed in the UK

REVIEW ARTICLE

The computation of linear and nonlinear optical constants
of semiconductors

D Hobbs†, D Weaire†, S McMurry† and O Zuchuat‡
† Department of Physics, Trinity College, Dublin 2, Ireland
‡ Ecole Polytechnique Federale, Lausanne, Switzerland

Received 7 March 1996, in final form 24 April 1996

Abstract. We review the problem posed by the calculation of the optical constants of solids
and the adaptation of the equation-of-motion method for this purpose. In the past crystalline
materials were studied by employing Bloch’s theorem, but for amorphous materials and surfaces
symmetry cannot generally be used to reduce the computation to manageable proportions. The
equation-of-motion method avoids the need for diagonalization in calculating linear and nonlinear
optical properties for large structural models of both crystalline and amorphous semiconductors.
This approach should offer a practical technique for calculating the optical properties of large
systems.

1. Introduction

In the last thirty years much attention has been directed towards determining the optical
properties of semiconducting materials, both experimentally [1, 2] and computationally
[3, 4]. Sophisticated methods have been developed to calculate them numerically, and have
proved rather successful for determining the bulk optical properties for most crystalline
semiconductors of interest. However, these methods exploit the periodicity of the crystal
lattice, and are confined to calculating the properties of a small structural unit, typically the
primitive unit cell. While this approach works well for structurally ordered materials it is
not practicable for calculating the properties of disordered systems, where large structural
models are required. The conventional calculations may be defeated by the memory
requirements or by the amount of summation required to calculate second- and third-order
optical susceptibilities. The time required for such calculations may be beyond the practical
capabilities even of modern computers.

2. Conventional calculations

The conventional band-structure approach to calculating the optical constants is well
developed. The theoretical expressions for the optical susceptibilities are obtained from
standard perturbation theory [5, 6], and the explicit expressions in the case of cubic symmetry
have been given, for example, by Ghahramaniet al [7] and Mosset al [3, 4]. In the case
of linear optical properties, numerous calculations have been carried out for a wide range
of materials. In general the imaginary part of the dielectric functionε2(ω) is calculated and
the real part is obtained by Kramers–Kronig [8] analysis. For example, Joannopoulos and
Cohen [9] have studied the complex crystalline and amorphous phases of Ge and Si using
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the empirical pseudopotential approach. They were able to show that short-range order is
sufficient to explain the amorphous density of states and theε2(ω) spectrum.

Turning to nonlinear optical properties, Fong and Shen [10] calculated the second-order
susceptibility

∣∣χ(2)

123(ω)
∣∣ for GaAs, InAs and InSb. Experiments by Changet al [1] had

previously indicated a correlation between
∣∣χ(2)

123(ω)
∣∣ and the band structure. The paper of

Fong and Shen [10] attempted, with some success, to relate the second-order response to
double resonances in the linear spectra. Their static limit,ω → 0, values for

∣∣χ(2)

123(ω)
∣∣ were

however smaller by an order of magnitude than experimental values and they attributed this
to the fact that local field effects are not included in their calculations.

Figure 1. Theoretical and experimental results for
∣∣χ(2)(ω)

∣∣ of GaAs from Mosset al [3].
The full line in the figure is the calculated spectrum from empirical tight-binding bands while
the dotted and dashed lines and the crosses represent experimental measurements from various
sources. Mosset al [3] have given detailed references for the experimental data.

Mosset al [3, 4] have carried out empirical tight-binding calculations of the dispersion
of the second- and third-order optical constants for zinc-blende crystals. In the first of these
papers the finite- and zero-frequency values ofχ

(2)

123(ω) were calculated for GaP, GaAs,
GaSb, InAs and InSb. We have reproduced their results for GaAs in figure 1, in which
experimental data have been superimposed. Their approach differs from that of Fong and
Shen [10] as they employed three different methods for determining the momentum matrix
elements. They were able to show that the use of empirically determined matrix elements
gave much better agreement with the measured spectra in the energy ranges where the
experimental data existed. From this they concluded that the static limit results of Fong and
Shen [10] were an order of magnitude smaller because of an inadequate choice of matrix
elements and not due to the local field effect as previously claimed. Their paper also broke
new ground as the theoretical expressions for the real and imaginary part ofχ(2)(ω) were
rearranged to remove the troublesome terms which diverge asω−3. The resulting formulae



Optical constants of semiconductors 4693

were presented in a form which could be related to the linear dielectric function,ε2(ω), atω
and 2ω, thus permitting easier correlation between critical points in the bands and structure
in χ(2)(ω).

Figure 2. Theoretical predictions of
∣∣χ(3)(ω)

∣∣ for GaAs (Mosset al [4]). The dashed line

represents the
∣∣χ(3)

xxxx

∣∣ component and the full line represents the 3
∣∣χ(3)

xyxy

∣∣ component. The
figures on the left are from semi-ab-initio bands while those on the right are from empirical
tight-binding bands.

Figure 3. Theoretical predictions of
∣∣χ(3)(ω)

∣∣ for Si (Mosset al [4]). The presentation of the
graphs is the same as figure 2.

After their study of second-order optical properties Moss and co-workers [4] turned their
attention to the dispersion of third-order optical constants. They calculated the dispersion,
anisotropy and magnitude ofχ(3)(ω) in Si, Ge and GaAs using both an empirical tight-
binding and a semi-ab-initio band-structure technique. They found the sign ofχ(3)(0)

to be positive, in agreement with experimental values. A comparison of the results of
two different band-structure methods indicated that the dispersion ofχ(3)(ω) is extremely
sensitive to the details of the energy bands and wavefunctions. Their paper was the first
attempt to calculate the dispersion ofχ(3)(ω): both nonzero independent elements, given by
χ

(3)

1111(ω) ≡ A andχ
(3)

1212(ω) ≡ B/3, were calculated, and used to determine the anisotropy
parameterσ = (B − A)/A which vanishes for an isotropic system. This quantity is of
great interest as it is easier to determine experimentally than the absolute value ofχ(3)(ω).
As in the second-order case, Mosset al [4] rearranged the conventional expressions to
remove the divergentω−4 term, and, as we shall see later, this is not possible within the
equation-of-motion formalism. Mosset al [4] were unable to come to any conclusion about
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the degree of agreement of the absolute value,
∣∣χ(3)(ω)

∣∣, with experiment, as experimental
data exist only for two frequencies. Their results are reproduced for GaAs and crystalline
Si in figures 2 and 3 respectively.

Subsequently Ghahramaniet al [7] calculated the dispersion of the first-, second- and
third-order optical constants of ZnSe, ZnTe and CdTe using a linear combination of Gaussian
orbitals and the formalism developed by Mosset al [3, 4]. They obtained good agreement
with experiment and found further evidence that the effects of weak optical transitions are
much stronger in second- and third-order spectra than in the linear response function.

In a later publication Mosset al [11] applied a semi-ab-initio tight-binding formalism
to study the dispersion ofχ(3)(ω) in C, Si, Ge, SiC, BP, AlP, AlAs, AlSb, GaP, GaAs,
GaSb, InP, InAs and InSb which represent most of group IV and III–V semiconductors.
They found that in generalχ(3)(ω) is dominated by 3ω- and 2ω-resonances with the direct
gap at either the Brillouin zone centre or the E1 critical point.

Recently Huang and Ching [12, 13, 14] have published a series of papers on first-,
second- and third-order optical properties respectively. They have studied the important
group IV, III–V and II–VI compounds using the first-principles orthogonalized linear
combination of atomic orbitals (OLCAO) method in the local density approximation. This
series of papers uses the expressions derived by Mosset al [3, 4], and represents perhaps
the most ambitious approach to calculating the linear and nonlinear optical constants to
date. Their results and conclusions are somewhat similar to those of Mosset al [3, 4],
although the range of calculations is greater and their analysis is more thorough. Huang
and Ching [14] have shown that the validity of Miller’s rule [8] for the ratio between linear
and nonlinear susceptibilities is limited to the low-frequency range. Sufficient and accurate
conduction band wavefunctions were found to be the crucial ingredients in obtaining accurate
third-order spectra.

Other topics of particular interest today include structural models of surface
reconstruction, the amorphous semiconductors and porous materials. Surface optical
spectroscopy has contributed a great deal of understanding concerning the atomic and
electronic structure of cleaved semiconductors. The origin of surface optical properties is
largely inferred from calculations on simple microscopic structural models. This approach
has not reproduced experimental results in detail because of the low level of sophistication
of the theory (lack of many-body corrections in the band structure [15]) and the difficulty
of modelling real surfaces with simple structural models. McGilp [16] and others have
looked beyond this approach by suggesting that second-harmonic generation can be surface
specific and may become a useful nondestructive tool for interface studies. This suggestion
has prompted Cini [17] to conduct simple model calculations of second-harmonic generation
from interfaces, addressing the difficult combination of surface physics and nonlinear optics.

The elaborate geometry of realistic surface reconstructions (see, for example, Shkrebtii
and Del Sole [18] for a discussion of the Si(100) surface) generally requires a large number of
atomic sites. These materials defeat the conventional band-structure methods for realistically
calculating nonlinear coefficients.

In an attempt to meet the need for new methods for large systems, we have developed
the equation-of-motion method for calculating linear and nonlinear optical properties. In the
next section we shall review this method, particularly its application to electronic properties.
Following this, the general formalism will be presented, and finally explicit expressions for
first-, second- and third-order optical properties will be given together with some preliminary
results. Because the experimental data are often rather fragmentary and unreliable, we shall
concentrate on showing the consistency of the new method with those it is designed to
extend.
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3. Background on the equation-of-motion method

Since the paper of Albenet al [19], the equation-of-motion method has been used to study a
variety of different problems. Weaire and Williams [20] used the method to investigate the
Anderson localization problem, and they were able to establish an efficient formalism for
studying large numbers of atoms. Weaire and Srivastava [21] later refined the method and
were then able to identify the Anderson transition. Kramer and Weaire [22] and later Kramer
et al [23] showed how the method could be used to determine the conductivity of disordered
systems. We have also found the method useful for studying other properties, such as the
sign of the Hall coefficient [24] and state densities for large structural models of amorphous
semiconductors. A comparative study by Bose [25] of the equation-of-motion and recursion
[26] methods suggested that, while similar results were obtained, the recursion method was
considerably faster. However, a further detailed comparison was made between the two
methods by Weaire and O’Reilly [27] in terms of flexibility, efficiency and transparency
of interpretation. They were able to show how the more physically transparent equation-
of-motion method could be adapted to give comparable efficiency to that of the recursion
method.

Following the initial developments outlined above, the method has been applied to
realistic models of amorphous silicon to calculate properties such as density of states [28]
[29], spectral functions [29], diffusivity [30], conductivity [30] and linear optical properties
[31, 32]. Recently, massively parallel calculations of the electronic structure of nonperiodic
microcrystallites of transition metal oxides have been performed [33]. In this paper the
potential of the equation-of-motion method becomes apparent in calculations performed on
a structural model of almost half a million atoms. This computation is equivalent to an
n × n eigenvalue problem wheren ∼ 2 500 000.

The equation-of-motion method was originally developed by Albenet al [19] to calculate
the density-of-states and spectral functions of large (∼8000 atoms) three-dimensional alloy
models. In their paper they solved the time-dependent Schrödinger equation numerically
for a time interval determined by the desired energy resolution. They then Fourier analysed
the resulting time dependence to obtain the spectrum of the finite model, broadened with a
resolution function whose width was predetermined.

It should be mentioned at this point that Prelovšek [34] pioneered a similar approach
to study diffusion in the Anderson model of a disordered system. The basic idea of the
paper was to simulate directly the quantum mechanical diffusion of a particle with well
defined energy, and to extract quantities such as conductivity and participation ratio from
the evolution of an initial state which is localized.

4. The equation-of-motion method

The equation-of-motion method generates a specific electronic state
∣∣9(t)

〉
by numerical

integration of the Schrödinger equation

i h̄
∂

∂t

∣∣9(t)
〉 = H

∣∣9(t)
〉

(1)

from a randomly chosen initial state. In the most elementary case, the coefficients in the
expansion of the initial state in some basis are random phase factors, eiφn . In calculating
optical properties of semiconductors such states are separately specified for the valence
and conduction bands, as described below. Time-dependent expressions involving matrix
elements between such states must be integrated to yield values of the optical constants
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as a function of frequency. The equivalence of the equation-of-motion expressions to the
standard expressions may be demonstrated by expanding the state

∣∣9(t)
〉

in terms of energy
eigenstates: ∣∣9(t)

〉 =
∑

n

ane−iEnt/h̄
∣∣n〉

. (2)

The original use of such a method [19] was for the electronic density of states,g(ω), where
E = h̄ω, in terms of the expression

g(ω) = Re

π
lim

T →∞

∫ T

0
dt eiωte−ηt

〈
9(0)

∣∣9(t)
〉
. (3)

Substitution of the form (2) reduces this to

g(ω) =
∑

n

∣∣an

∣∣2 η

π(η2 + (ω − En/h̄)2)
(4)

which approaches the familiar expression

g(ω) =
∑

n

∣∣an

∣∣2
δ

(
ω − En

h̄

)
in the limit η → 0. The expansion coefficients,an, like those in the expansion of the initial
state, are random variables [23]. To average over the consequent fluctuations one may
either use a large ensemble of different initial states, or, as in (3), use a finite Lorentzian
broadening parameterη.

In the case of optical properties, more than one initial state is needed and these states
are confined to the subspaces of the valence and conduction bands by using a filtering
technique [28]. Here this is performed within the empirical tight-binding formalism. These
wavefunctions may be used to evaluate matrix elements of the momentum operator and
appropriate combinations of these matrix elements may then be Fourier transformed to give
approximate values for the required optical constants.

The preliminary calculation in which the wavefunctions are modified to exclude
eigenfunctions outside the chosen ranges of energy [24] uses the filter function

f (t) = 1

πt
sin

(
Emaxt

h̄

)
exp

(
iE0t

h̄

)
. (5)

This confines the wavefunction to the required energy eigenfunction components; the
resulting electron wave packet is then drawn from an energy range of 2Emax . The spectrum
may be broadened, in order to smooth out the effects of a finite model, as discussed in
connection with the calculation of the density of states.

In this paper we shall use the semi-empirical tight-binding formalism of Voglet al
[35], in which we have introduced a cut-off between first- and second-nearest neighbours.
This scheme is an extension of the tight-binding method of Slater and Koster [36]. In
the theory the off-diagonal matrix elements of the Hamiltonian scale according to thed−2

rule of Harrison [37]. When dealing with amorphous materials we simply replace thed−2

parameter for the crystal with that of the amorphous material. The tight-binding scheme of
Vogl et al [35] is anad hocimprovement on that of Slater and Koster [36]. They introduce
a somewhat artificial excited s∗ state on each atom, in order to achieve a proper description
of the unoccupied anti-bonding lower conduction bands.

The interaction matrix elements of the momentum operator are calculated using the
commutation relation between the Hamiltonian and position operator in a particular Cartesian
direction.

P x
aa′ = mi

h̄
[H, x] = mi

h̄

∑
a′′

[Haa′′xa′′a′ − xaa′′Ha′′a′ ] (6)
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wherea, a′ anda′′ range over the valence and conduction band states.
Only on-site terms have been estimated in the position operator, and its diagonal term

is the mean position of each atomic site relative to the origin in the appropriate direction.
The only nonzero off-diagonal terms are〈s|x|px〉 and 〈s∗|x|px〉, i.e. the overlap of the
s and s∗ orbitals with the px orbital. These off-diagonal terms are obtained by a fit
to bulk optical properties and we have used the following for GaAs [38] and Si [39]
respectively: 〈s|x|px〉GaAs = 0.0265 Å; 〈s∗|x|px〉GaAs = 0.1058 Å; 〈s|x|px〉Si = 0.27 Å;
〈s∗|x|px〉Si = 1.08 Å.

5. The dielectric function

Weaireet al [31, 32] have used this method to calculate the imaginary part of the dielectric
function using both a plane-wave basis [31] and a tight-binding basis set [32]. The calc-
ulation was carried out first on a 216-atom model of amorphous silicon (a-Si) [40] and
subsequently on models of 1728 atoms of a-Si [41] and 1995 atoms of hydrogenated a-Si
(a-Si:H) [42]. For the linear optical properties the following expression for the imaginary
part of the dielectric function has been obtained within the equation-of-motion formalism:

ε2 = π−1GE−2h̄2 Im lim
T →∞

T −1 i

h̄

×
[∫ T

0
dt

〈
c(t)

∣∣P ∣∣v(t)
〉
e(−i/h̄)(E+iη)t

∫ ∞

t

dt ′
〈
v(t ′)

∣∣P ∣∣c(t ′)〉e(i/h̄)(E+iη)t ′
]

(7)

where G = 2�−1(2πe/m)2, ω is the frequency,P is a component of the momentum
operator in a particular direction,m and e are the mass and charge respectively of an
electron,� is the volume of the system andv represents a state confined to the subspace of
the valence andc to that of the conduction band. As in (3),η is a Lorentzian broadening
parameter, and, as will be seen later, it is included in all of our calculations for optical
constants.

We use the expressions of Mosset al [3, 4] for nonlinear optical properties but we
have modified them by replacingE by E + iη. One may show [31, 32] that expression
(7) for the dielectric function is equivalent to the conventional expression involving sums
over energy eigenstates by again expanding the time-dependent vectors as in equation (2),
distinguishing between valence and conduction band states:∣∣v(t)

〉 =
∑

i

αie
−iEi t/h̄

∣∣i〉 (8)

∣∣c(t)〉 =
∑

j

βj e−iEj t/h̄
∣∣j 〉

. (9)

After substituting these expansions into expression (7) one finds that most of the resulting
products are associated with complex exponentials which average to zero asT → ∞ leaving
the conventional expression, apart from fluctuations due to the random initial conditions,
discussed above.

We have used the equation-of-motion method to calculate the dielectric function for
216-atom models of crystalline and amorphous silicon and GaAs. The finite size of the
models used gives rise to detailed structure on the scale 0.2 eV or less, which is of no
physical interest. We therefore use a broadening parameter of magnitude 0.27 eV which
has the effect of smoothing the results on this scale. The results diverge at low energies
because of a finite density of states in the band-gap region, associated with the broadening
parameterη and a finite integration time for Schrödinger’s equation. The results, depicted
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Figure 4. The dimensionlessε2(ω) for (a) crystalline and (b) amorphous silicon is shown
with experimental results [49] superimposed. The numerical results were calculated using the
equation-of-motion method and an sps∗ basis. The broadening parameter was 0.0272 eV and
four specialk-points [50] were used with 216-atom models.

in figures 4(a), 4(b) and 5 for Si (crystalline and amorphous) and GaAs respectively, show
quite reasonable behaviour when compared to experimental data [4], which suggests that
the tight-binding model should provide a good guide for nonlinear optical properties.

6. Second order

For second-order nonlinear optical properties the susceptibility tensor for cubic systems has
been obtained from standard perturbation theory by Mosset al [3]. It has been demonstrated
by Aspnes [43] that only virtual-electron transitions, i.e. transitions between one valence
band and two excited conduction band states (v–c–c′), give a significant contribution to
the second-order tensor. The virtual-hole contribution, involving transitions between two
valence band states and a conduction band state (v–v′–c), was shown to be negative and more
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Figure 5. The dimensionlessε2(ω) for GaAs is shown with experimental results [51]
superimposed. The numerical results were calculated using the equation-of-motion method
and an sps∗ basis. The broadening parameter was 0.0136 eV and four specialk-points [50] were
used with a 216-atom model.

than an order of magnitude smaller than the virtual-electron contribution for the materials
considered here. In this paper we follow the example of Mosset al [3] and ignore the
virtual-hole contribution, in order to make a direct comparison with their results.

Using the equation-of-motion method we have obtained expression (A1) which is listed
in appendix A. The validity of this expression may be demonstrated by expanding it in
terms of sums over eigenstates [44], as explained above. This shows that it is equivalent to
the expression of Mosset al [3], in the sense discussed at the beginning of section 4.

6.1. Discussion of results forχ(2)

Many band-structure calculations forχ(2)(ω) (Moss et al [3], Huang and Ching [13] and
Fong and Shen [10]) already exist for important semiconductor materials. Here we shall
demonstrate that the equation-of-motion method may also be used to calculate the second-
order spectra. With the recent interest in surface second-harmonic generation [45] such a
novel approach may prove invaluable in the future. The calculations presented here are
similar to those of Mosset al [3]. The results presented in their paper are for full band-
structure calculations in the irreducible wedge of the Brillouin zone.

χ(2)(ω) has only one independent component which is taken to beχ(2)
xyz (which is

equivalent toχ(2)

111(2ω) used by Fong and Shen [10]) andxyz implies that the appropriate
components of the momentum operator are calculated. Our approach is somewhat simplified
in that we calculate the componentχ(2)

xyz using four specialk-points in the full Brillouin zone
and a 216-atom structural model. The results are presented in figure 6 and give reasonable
agreement with those of Mosset al [3]. In the energy range 0–0.8 eV the curve diverges as
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Figure 6.
∣∣χ(2)

xyz(ω)
∣∣ for GaAs. Calculated using the equation-of-motion method and an sps∗

basis. The broadening parameter was 0.0272 eV and four specialk-points [50] were used with
a 216-atom model. The corresponding results of Mosset al [3] were divided by a factor of two
to aid comparison, and are superimposed on the graph.

E−3 due to the prefactor in expression (A1). Other methods of calculation do not suffer from
this problem. Mosset al [3] have been able to rearrange the conventional expression using
partial fractions and found that the equation was not divergent asE → 0. When using
the equation-of-motion formalism one is restricted to using the conventional expression
because of the requirement that specific energy denominators should be generated from the
integral terms. Our results are of the same order of magnitude as those of Mosset al [3],
although relative peak strengths vary somewhat. One should remember that this calculation
represents only a simplistic approach, sufficient to convince the reader of the validity of the
method.

7. Third order

The next obvious step is to see if we can extend this method to calculate the third-harmonic
spectrum for some large structural models for which the conventional methodology is yet
more cumbersome. We will take amorphous silicon as an example. The most widely used
model for amorphous silicon is that of Wootenet al [40] and consists of 216 atoms. To
calculate the third-harmonic spectrum of such a model using the conventional approach of
sums over eigenstates is simply beyond the capabilities of modern computers.

Again following the formalism of Mosset al [4] we attempt to simulate the five
physically distinct contributions toχ(3) using the equation-of-motion method. The five
contributions are a virtual-electron, three virtual-hole and a three-state term. The virtual-
electron term corresponds to the excitation of an electron from the valence band to three
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Figure 7. The five physically distinct contributions toχ(3)(ω) (from Mosset al [4]).

successive conduction bands and finally back to the valence band (see figure 7(a)) and we
obtain expression (B1), listed in appendix B, within the equation-of-motion formalism. We
refer the reader to other work [44] where it is argued that these time-dependent expressions
are equivalent to those obtained by Mosset al [4].

Next we must consider the virtual-hole terms. The first virtual-hole term is analogous to
the virtual-electron term above: it involves the excitation of a conduction band hole through
three successive valence states and finally back to the conduction band (see figure 7(b)).
The other two virtual-hole terms correspond to the successive excitation of both an electron
and a hole (see figures 7(c) and 7(d)). Rather than reproducing the virtual-hole expressions
explicitly one can use table 1 to convert the virtual-electron expression to virtual-hole
expressions. This table is analogous to that given by Mosset al [4] for the conventional
expressions, and the necessary substitutions for the matrix elements are indicated. The
overall sign factor is given in the last column.

Finally the three-state term is depicted in figure 7(e) for a one-particle system. This
term has a slightly different structure to that of the other third-order terms, and so we
reproduce the expression explicitly in appendix B. The demonstration of the equivalence of
expression (B2) to its counterpart [4] is similar to that in the case of the virtual-electron
process. However, the three-state term is somewhat simplified as the integral labelledS is
no longer nested within the integralH , as it was for the virtual-electron and virtual-hole
terms.
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Table 1. Table for converting the virtual-electron term into virtual-hole terms.

f (t) G(t) H(t) S(t ′) Overall sign

Virtual electron〈
c(t)

∣∣P ∣∣c′(t)
〉 〈

v(t ′)
∣∣P ∣∣c(t ′)〉 〈

c′(t ′)
∣∣P ∣∣c′′(t ′)

〉 〈
c′′(t ′′)

∣∣P ∣∣v(t ′′)
〉 +

Virtual hole〈
v′′(t)

∣∣P ∣∣v(t)
〉 〈

v(t ′)
∣∣P ∣∣c(t ′)〉 〈

v′(t ′)
∣∣P ∣∣v′′(t ′)

〉 〈
c(t ′′)

∣∣P ∣∣v′(t ′′)
〉 +〈

c(t)
∣∣P ∣∣c′(t)

〉 〈
v(t ′)

∣∣P ∣∣c(t ′)〉 〈
v′(t ′)

∣∣P ∣∣v(t ′)
〉 〈

c′(t ′′)
∣∣P ∣∣v′(t ′′)

〉 −〈
v′(t)

∣∣P ∣∣v(t)
〉 〈

v(t ′)
∣∣P ∣∣c(t ′)〉 〈

c(t ′)
∣∣P ∣∣c′(t ′)

〉 〈
c′(t ′′)

∣∣P ∣∣v′(t ′′)
〉 −

Figure 8.
∣∣χ(3)

xxxx(ω)
∣∣ for crystalline GaAs. Calculated using the equation-of-motion method and

an sps∗ basis. The broadening parameter was 0.0136 eV and the specialk-point of Baldereschi
[52] was used with a 216-atom model. The corresponding results of Mosset al [4] were divided
by a factor of two to aid comparison, and are superimposed on the graph.

7.1. Discussion of results forχ(3)

The number of full band-structure calculations for third-order nonlinear susceptibility
tensorsχ(3)(ω) is extremely small. In recent years two detailed papers on the subject
have appeared (Mosset al [4] and Ching and Huang [14]) in which full band-structure
calculations for group IV, III–V and II–VI crystalline semiconductors have been carried
out. The experimental situation is far worse: measurements are typically made at only one
wavelength, and so far there is little information (see Burns and Bloembergen [2]) on the
dispersion relations available for comparison with the calculated results. The situation for
amorphous semiconductors is even graver, with no realistic theoretical calculations, as large
structural models are required. We are aware of only one set of experimental data, measured
by Mosset al [46], where a comparison is made between crystalline and amorphous silicon
at only one wavelength.
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Figure 9.
∣∣χ(3)

xxxx(ω)
∣∣ for crystalline and amorphous silicon. The presentation of the graphs is

the same as in figure 8. The corresponding crystalline Si data from Mosset al [4] have again
been divided by a factor of two and are superimposed for comparison.

The object of this section is to make a comparison of the dispersion ofχ(3)(ω) for
crystalline and amorphous silicon. We have also calculatedχ(3)(ω) for GaAs and our results
compare favourably with those of Mosset al [4]. For third-harmonic generation there is
only a single frequency present and soχ(3)(ω) will be symmetric in the last three indices.
In addition, for cubic materials, all of the (x, y, z) Cartesian directions are equivalent and so
there are only two nonzero independent elements ofχ(3)(ω) (see Burns and Bloembergen
[2]), namelyA ≡ χ(3)

xxxx(ω) and B ≡ 3χ(3)
xyxy(ω) = 3χ(3)

xyyx(ω) = 3χ(3)
xxyy(ω). In this paper

we have only attempted to simulate the first component,χ(3)
xxxx(ω), as we are interested in a

comparison with the experimental data of Mosset al [46], who found that at an energy of
1.17 eV (1.06µm) the absolute value ofχ(3)(ω) was smaller by about 33% in ion-implanted
amorphous silicon than in crystalline silicon.

We present results for GaAs in figure 8, which were calculated using one specialk-
point and a 216-atom structural model. Data have not been shown below 0.4 eV because
the results diverge asE−4 as E → 0 due to the prefactor in expressions (B1) and (B2).
The remaining data agree quite well with those of Mosset al [4] although the magnitude
of our results is somewhat lower.

In figure 9 the comparison between crystalline and amorphous silicon is presented, the
crystalline results being equivalent to those of Mosset al [4]. The comparison is at first
rather striking. The main peak of the amorphous data is centred just above 0.9 eV, about
0.1 eV below the main crystalline peak. Our results do not, however, conflict with the
measurements of Mosset al [46], since their measurements were made at 1.17 eV, and at
this energy the equation-of-motion data are comparable for the two materials, although the
results are not sufficiently accurate to predict small differences.
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8. Conclusion

We have presented various preliminary results of an alternative method of calculating the
optical properties of solids in cases which defeat the conventional band-structure approaches.
Agreement with older methods, in the case of small unit cells, seems sufficient to encourage
further development. We have examined the relationships between the expressions used for
optical constants in the equation-of-motion method and the standard expressions derived
through time-dependent perturbation theory. Zuchuat [47] has developed a set of rules,
based on a diagrammatic approach, for constructing the equation-of-motion expressions,
and showed that for the nonlinear constants, the expressions (A1) and (B1) used for
calculatingχ(2) andχ(3) arise from exploiting total symmetry of the standard expressions
under exchange of pairs of photon lines. This total symmetry is strictly applicable only
in the complete absence of absorption; however the widths of the lines in the solid are so
narrow in comparison with the resolution claimed for the results of the equation-of-motion
calculations that it is reasonable to make the approximation.

As a final note we should add that Morgan and Okumu [48] have very recently used
a random-phase approach to estimateχ(3)(ω) for a-Si. Their results seem consistent with
those shown here in figure 9.
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Appendix A. Second order

χ
(2)
V .E.(ω) = i

2

∣∣∣ e

mω

∣∣∣3
lim

T →∞
1

h̄2T

∫
BZ

dk

4π3

[∫ T

0
f1(t)G1(t)H1(t) dt

+
∫ T

0
f2(t)G2(t)H2(t) dt +

∫ T

0
f3(t)G3(t)H3(t) dt

]
(A1)

where

f1(t) = 〈
c(t)

∣∣P ∣∣c′(t)
〉
e−(i/h̄)(E+iη)t

G1(t) =
∫ −∞

t

〈
c′(t ′)

∣∣P ∣∣v(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

H1(t) =
∫ ∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e(i/h̄)(2E+2iη)t ′ dt ′

f2(t) = 〈
c(t)

∣∣P ∣∣c′(t)
〉
e(i/h̄)(2E+2iη)t

G2(t) =
∫ −∞

t

〈
c′(t ′)

∣∣P ∣∣v(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

H2(t) =
∫ −∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e−(i/h̄)(E+iη)t ′ dt ′

f3(t) = 〈
c(t)

∣∣P ∣∣c′(t)
〉
e−(i/h̄)(E+iη)t
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G3(t) =
∫ ∞

t

〈
c′(t ′)

∣∣P ∣∣v(t ′)
〉
e(i/h̄)(2E+2iη)t ′ dt ′

H3(t) =
∫ −∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e−(i/h̄)(E+iη)t ′ dt ′.

Appendix B. Third order

The virtual-electron term is

χ
(3)
V .E.(ω) = 1

3

∣∣∣ e

mω

∣∣∣4
lim

T →∞
i

h̄3T

∫
BZ

dk

4π3

[∫ T

0
f1(t)G1(t)H1(t) dt

+
∫ T

0
f2(t)G2(t)H2(t) dt +

∫ T

0
f3(t)G3(t)H3(t) dt

+
∫ T

0
f4(t)G4(t)H4(t) dt

]
(B1)

where

f1(t) = 〈
c(t)

∣∣P ∣∣c′(t)
〉
e−(i/h̄)(E+iη)t

G1(t) =
∫ ∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e(i/h̄)(3E+3iη)t ′ dt ′

H1(t) =
∫ −∞

t

〈
c′(t ′)

∣∣P ∣∣c′′(t ′)
〉
e−(i/h̄)(E+iη)t ′S1(t

′) dt ′

S1(t
′) =

∫ −∞

t ′

〈
c′′(t ′′)

∣∣P ∣∣v(t ′′)
〉
e−(i/h̄)(E+iη)t ′′ dt ′′

f2(t) = 〈
c(t)

∣∣P ∣∣c′(t)
〉
e(i/h̄)(3E+3iη)t

G2(t) =
∫ −∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e−(i/h̄)(E+iη)t ′ dt ′

H2(t) =
∫ −∞

t

〈
c′(t ′)

∣∣P ∣∣c′′(t ′)
〉
e−(i/h̄)(E+iη)t ′S2(t

′) dt ′

S2(t
′) =

∫ −∞

t ′

〈
c′′(t ′′)

∣∣P ∣∣v(t ′′)
〉
e−(i/h̄)(E+iη)t ′′ dt ′′

f3(t) = 〈
c(t)

∣∣P ∣∣c′(t)
〉
e−(i/h̄)(E+iη)t

G3(t) =
∫ −∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e−(i/h̄)(E+iη)t ′ dt ′

H3(t) =
∫ ∞

t

〈
c′(t ′)

∣∣P ∣∣c′′(t ′)
〉
e(i/h̄)(3E+3iη)t ′S3(t

′) dt ′

S3(t
′) =

∫ −∞

t ′

〈
c′′(t ′′)

∣∣P ∣∣v(t ′′)
〉
e−(i/h̄)(E+iη)t ′′ dt ′′

f4(t) = 〈
c(t)

∣∣P ∣∣c′(t)
〉
e−(i/h̄)(E+iη)t

G4(t) =
∫ −∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e−(i/h̄)(E+iη)t ′ dt ′

H4(t) =
∫ ∞

t

〈
c′(t ′)

∣∣P ∣∣c′′(t ′)
〉
e−(i/h̄)(E+iη)t ′S4(t

′) dt ′
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S4(t
′) =

∫ ∞

t ′

〈
c′′(t ′′)

∣∣P ∣∣v(t ′′)
〉
e(i/h̄)(3E+3iη)t ′′ dt ′′.

The three-state term is

χ
(3)
three−state(ω) = 1

3

∣∣∣ e

mω

∣∣∣4
lim

T →∞
i

h̄3T

∫
BZ

dk

4π3

[∫ T

0
f1(t)G1(t)H1(t)S1(t) dt

−
∫ T

0
f2(t)G2(t)H2(t)S2(t) dt +

∫ T

0
f3(t)G3(t)H3(t)S3(t) dt

−
∫ T

0
f4(t)G4(t)H4(t)S4(t) dt

]
(B2)

where

f1(t) = 〈
c(t)

∣∣P ∣∣v′(t)
〉
e−(i/h̄)(E+iη)t

G1(t) =
∫ ∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e(i/h̄)(3E+3iη)t ′ dt ′

H1(t) =
∫ −∞

t

〈
v′(t ′)

∣∣P ∣∣c′(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

S1(t) =
∫ −∞

t

〈
c′(t ′)

∣∣P ∣∣v(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

f2(t) = 〈
v′(t)

∣∣P ∣∣c′(t)
〉
e−(i/h̄)(E+iη)t

G2(t) =
∫ ∞

t

〈
c′(t ′)

∣∣P ∣∣v(t ′)
〉
e(i/h̄)(3E+3iη)t ′ dt ′

H2(t) =
∫ −∞

t

〈
c(t ′)

∣∣P ∣∣v′(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

S2(t) =
∫ −∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e−(i/h̄)(E+iη)t ′ dt ′

f3(t) = 〈
c′(t)

∣∣P ∣∣v(t)
〉
e−(i/h̄)(E+iη)t

G3(t) =
∫ ∞

t

〈
v(t ′)

∣∣P ∣∣c(t ′)〉 e(i/h̄)(3E+3iη)t ′ dt ′

H3(t) =
∫ −∞

t

〈
v′(t ′)

∣∣P ∣∣c′(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

S3(t) =
∫ −∞

t

〈
c(t ′)

∣∣P ∣∣v′(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

f4(t) = 〈
v(t)

∣∣P ∣∣c(t)〉 e−(i/h̄)(E+iη)t

G4(t) =
∫ ∞

t

〈
c′(t ′)

∣∣P ∣∣v(t ′)
〉
e(i/h̄)(3E+3iη)t ′ dt ′

H4(t) =
∫ −∞

t

〈
c(t ′)

∣∣P ∣∣v′(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′

S4(t) =
∫ −∞

t

〈
v′(t ′)

∣∣P ∣∣c′(t ′)
〉
e−(i/h̄)(E+iη)t ′ dt ′.
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